The histone chaperone CAF-1 safeguards somatic cell identity.

Nature
Authors
Keywords
Abstract

Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.

Year of Publication
2015
Journal
Nature
Volume
528
Issue
7581
Pages
218-24
Date Published
2015 Dec 10
ISSN
1476-4687
URL
DOI
10.1038/nature15749
PubMed ID
26659182
PubMed Central ID
PMC4866648
Links
Grant list
P50-HG007735 / HG / NHGRI NIH HHS / United States
P30 CA008748 / CA / NCI NIH HHS / United States
P50 HG007735 / HG / NHGRI NIH HHS / United States
R01 HD058013-06 / HD / NICHD NIH HHS / United States
Howard Hughes Medical Institute / United States
P01 CA013106 / CA / NCI NIH HHS / United States
R01 HD058013 / HD / NICHD NIH HHS / United States
F32 HD078029 / HD / NICHD NIH HHS / United States
336860 / European Research Council / International